
 Scientific Journal for Contemporary Education and Application of Information Technologies – EdTech Journal 

 Type of paper: Original scientific paper 
 Received: 10.06.2023. 
 Accepted:  04.07.2023. 
 DOI: h�ps://doi.org/10.18485/edtech.2023.3.1.5 
 UDC: 004.421:795 

 Pathfinding Algorithms in Games 
 Marko Novaković  * 

 *  Information Technology School – ITS, Belgrade, Serbia;  marko45521@its.edu.rs 

 Abstract:  This  article  describes  the  A*,  Dijkstra's,  and  genetic  pathfinding  algorithms  used  in  games,  providing  a 
 comparison  and  information  about  them.  While  these  are  not  the  only  algorithms  used  in  game  pathfinding,  they  are 
 currently  the  most  commonly  used  ones.  As  games  increasingly  demand  the  presentation  of  more  data  (higher-quality 
 graphics,  complex  environmental  communication  systems,  be�er  sound  effects,  advanced  character  movement  sets, 
 smarter  AI,  etc.)  in  shorter  time  frames,  algorithms  must  be  developed  to  become  more  optimal.  In  the  near  future, 
 they will be replaced by improved versions or entirely new algorithms. 

 Keywords:  ant  colony  optimization,  AI,  A*  algorithm,  breadth-first  search,  Dijkstra's  algorithm,  game  character, 
 graph, genetic algorithm, level, pathfinding, ant colony optimization. 

 I.  I  NTRODUCTION 

 Games  characters  often  need  to  move  around  at  certain  levels.  Sometimes  these  movements  are  predetermined 
 by  developers,  such  as  a  guard  patrolling  a  specific  path  or  a  small  enclosed  area  where  a  dog  can  move  randomly. 
 Fixed  paths  are  easy  to  implement,  but  errors  can  easily  occur  if  an  object  ends  up  on  the  path.  Characters  that  move 
 randomly may appear as having no aim and can easily get stuck. 

 More  complex  characters  do  not  know  in  advance  where  they  will  move.  Units  in  real-time  strategy  games 
 may  receive  orders  from  players  to  go  to  a  specific  point  on  the  map  at  any  given  time.  In  games  where  stealth  is 
 important,  a  patrolling  guard  may  need  to  go  to  the  nearest  alarm  location  and  call  for  backup.  Enemies  in  platform 
 games may need to chase the player across gaps using available platforms. 

 For  each  of  these  characters,  Artificial  Intelligence  (AI)  must  be  able 
 to  calculate  a  suitable  path  through  the  game  level  to  reach  the  goal  from 
 their  current  location.  We  want  the  path  to  be  reasonable,  as  short  as 
 possible,  and  for  the  character  to  move  fast  (it  wouldn't  look  smart  if  a 
 character walked from the kitchen to the living room through the a�ic). 

 This  is  called  pathfinding,  sometimes  referred  to  as  path  planning, 
 and  it  is  essential  in  AI  of  games.  In  the  example  of  the  AI  game  model 
 shown  in  Figure  1,  pathfinding  lies  at  the  boundary  between 
 decision-making  and  movement.  It  is  often  used  only  to  determine  how  to 
 move  towards  the  goal,  while  the  goal  itself  is  determined  by  other  AI 
 components,  and  the  pathfinder  only  calculates  the  path.  To  achieve  this,  it 
 can  be  integrated  into  the  movement  control  system  so  that  it  is  called  only 
 when  it  is  necessary  to  plan  a  path.  However,  the  pathfinding  AI  can  also 
 be used to determine both the goal and the path. 

 The  majority  of  games  use  a  pathfinding  solution  called  the  A*  algorithm  (A-star).  While  efficient  and  easy  to 
 implement,  A*  cannot  directly  operate  with  game-level  data.  It  requires  the  game  level  to  be  represented  in  a  specific 
 data structure: a directed, weighted graph. [1]  Figure  1: AI game model [1] 

 II.  D  IJKSTRA  '  S  A  LGORITHM 

 Given  a  graph  and  a  starting  node,  determine  the  shortest  path  from  the  starting  node  to  all  other  nodes  in  the 
 graph. 

 We  generate  a  shortest  path  tree,  taking  the  starting  node  as  the  root.  We  have  two  sets  of  data:  the  first  set 
 contains  the  nodes  included  in  the  shortest  path  tree,  and  the  second  set  contains  the  nodes  that  have  not  yet  been 
 included.  In  each  iteration  of  the  algorithm,  we  find  the  node  in  the  set  that  has  not  been  included  in  the  shortest  path 
 and has the smallest distance from the source. 

 Detailed steps of the algorithm: 

 1.  Create  a  set  called  sptSet  (shortest  path  tree  set)  to  keep  track  of  the  nodes  included  in  the  shortest 
 path  –  those  whose  shortest  distance  from  the  source  has  been  calculated  and  confirmed.  Initially,  this  set  is 
 empty. 

 51 

mailto:marko45521@its.edu.rs


 Scientific Journal for Contemporary Education and Application of Information Technologies – EdTech Journal 

 2.  Assign  distance  values  to  all  nodes  in  the  graph.  Initialize  all  distances  to  infinity.  Assign  a  distance  of 
 0 to the starting node so that it is selected first. 

 3.  While sptSet does not contain all nodes: 

 3.1.  Select the node that is not in sptSet and has the smallest distance from the last node. 

 3.2.  Include it in sptSet. 

 3.3.  Update  the  distances  of  all  nodes  that  are  adjacent  to  node  u  (the  last  node).  To  update  the 
 distances,  go  through  all  the  neighboring  nodes  of  node  u  .  For  each  neighboring  node  v  ,  if  the  sum  of  the 
 distance  from  u  and  the  weight  (cost  factor  –  the  distance  in  this  case)  from  u  to  v  is  less  than  the  distance  of 
 v  , then update the distance of  v  . 

 Example of a graph "Figure 2" to illustrate the algorithm's operation: 

 Figure 2: Example of a weighted graph [2] 

 The  set  sptSet  is  initially  empty,  and  the  distances  assigned  to  the  nodes  are  {0,  INF,  INF,  INF,  INF,  INF,  INF, 
 INF},  where  INF  represents  infinity.  Now,  a  node  with  the  minimum  distance  value  is  selected.  Node  0  is  chosen  and 
 included  in  sptSet.  Now,  sptSet  is  {0}.  After  adding  0  to  sptSet,  the  distances  of  its  neighboring  nodes  are  updated.  The 
 neighboring  nodes  of  0  are  1  and  7.  The  distance  values  of  1  and  7  are  updated  to  4  and  8,  respectively.  The  following 
 subgraph  shows  the  nodes  with  their  distance  values,  only  displaying  nodes  with  finite  distance  values.  The  nodes 
 included in the Shortest Path Tree (SPT) are marked in green "Figure 3". 

 Select  the  node  with  the  smallest  distance  that  is  not  already  included  in  the  SPT  (not  in  sptSet).  Node  1  is 
 selected  and  added  to  sptSet.  Now,  sptSet  looks  like:  {0,  1}.  Update  the  distance  values  of  the  neighboring  nodes  of 
 node 1. The distance of node 2 becomes 12 "Figure 4". 

 Select  the  node  with  the  smallest  distance  that  is  not  already  included  in  the  SPT  (not  in  sptSet).  Node  7  is 
 chosen. The distance values of nodes 6 and 8 become finite (15 and 9, respectively) "Figure 5". 

 Figure 3: Subgraph 1 [2]  Figure 4: Subgraph  2 [2]  Figure 5: Subgraph 3 [2] 

 Choose  the  node  with  the  smallest  distance  that  is  not  already  included  in  the  SPT  (not  in  sptSet).  Node  6  is 
 selected.  Now,  sptSet  looks  like:  {0,  1,  7,  6}.  Update  the  distance  values  of  the  neighboring  nodes  of  node  6.  The 
 distances of nodes 5 and 8 are updated "Figure 6". 

 52 



 Scientific Journal for Contemporary Education and Application of Information Technologies – EdTech Journal 

 Figure 6: Subgraph 4 [2] 

 We  repeat  these  steps  until  all  nodes  are  included  in  the  sptSet.  In  the  end,  we  obtain  the  following  Shortest 
 Path Tree (SPT) "Figure 7" [2]. 

 Figure 7: Subgraph 5 [2] 

 III.  A*  ALGORITHM 

 A*  (pronounced  "A  star")  is  an  algorithm  commonly  used  for  pathfinding  and  graph  traversal.  The  algorithm 
 efficiently finds the path of movement between graph nodes. 

 On  a  map  with  multiple  obstacles,  finding  paths  between  points  A  and  B  can  be  challenging.  For  example,  a 
 robot  without  additional  instructions  about  the  direction  of  movement  would  continue  moving  until  it  encounters  an 
 obstacle ("Figure 8"). 

 However,  the  A*  algorithm  introduces  heuristics  into  standard  graph  search  algorithms,  essentially  planning 
 ahead at each step to make a more optimal decision. With A*, the robot would search for a path as shown in "Figure 9". 

 A* is an extension of Dijkstra's algorithm with some characteristics of breadth-first search (BFS) [3]. 
 Similar  to  Dijkstra's  algorithm,  A*  constructs  the  shortest  path  tree  from  the  initial  node  to  the  goal  node.  What 

 makes  A*  different  and  more  effective  for  many  searches  is  its  use  of  a  function  ƒ(n)  for  each  node,  which  provides  an 
 estimate  of  the  total  cost  (length)  of  the  path  if  that  node  is  used.  Therefore,  A*  is  a  heuristic  function,  which  means 
 that the heuristic is more of an estimation rather than a provably accurate value. 

 A* expands paths that are shorter (cheaper) by using the function: 

 ƒ(n) = g(n) + h(n) 

 where: 

    ƒ(n)  = total estimated cost of the path through node  n  , 

    g(n)  = accumulated cost to reach node  n  , 

    h(n)  =  estimated  cost  from  node  n  to  the  goal.  This  is  the  heuristic  part  of  the  function,  making  an 
 assumption. 

 53 



 Scientific Journal for Contemporary Education and Application of Information Technologies – EdTech Journal 

 Figure 8: Inefficient way of finding a path [5]  Figure 9: Example of using A* for pathfinding [5] 

 In  the  grid  "Figure  10",  the  A*  algorithm  starts  from  the  beginning  (red  node)  and  considers  all  neighboring 
 nodes.  Once  the  list  of  neighboring  nodes  is  filled,  those  that  are  inaccessible  (walls,  obstacles,  out  of  bounds)  are 
 filtered  out.  Then,  the  node  with  the  lowest  cost,  determined  by  ƒ(n),  is  chosen.  This  process  is  recursively  repeated 
 until  the  shortest  path  to  the  goal  (blue  node)  is  found.  The  calculation  of  ƒ(n)  is  done  heuristically,  typically  yielding 
 good results. 

 Figure 10: Using the A* algorithm [5] 

 Calculation of h(n) can be done in several ways: 

 The  most  common  approach  is  to  use  the  Manha�an  distance  [4]  from  node  n  to  the  goal.  This  is  a  standard 
 heuristic for grid-based problems. 

    If h(n) = 0, A* becomes Dijkstra's algorithm, which guarantees to find the shortest path. 

 The  heuristic  function  must  be  admissible,  meaning  it  should  never  overestimate  the  cost  required  to  reach  the 
 goal. Both the Manha�an distance and h(n) = 0 are admissible. 

 Using  a  good  heuristic  is  important  for  determining  the  performance  of  the  A*  algorithm.  The  ideal  value  of 
 h(n) would be the exact cost of reaching the goal. 

 However,  this  is  not  possible  since  the  path  is  unknown.  But  a  method  can  be  chosen  that  gives  reasonably 
 accurate  values,  such  as  when  traveling  in  a  straight  line  without  obstacles.  This  would  result  in  optimal  A* 
 performance. 

 54 



 Scientific Journal for Contemporary Education and Application of Information Technologies – EdTech Journal 

 It  is  desirable  to  choose  an  h(n)  function  that  costs  less  than  actually  reaching  the  goal.  This  allows  h(n)  to 
 work  accurately.  If  a  higher  value  is  chosen,  it  would  lead  to  faster  but  less  accurate  performance.  Therefore,  it  is  often 
 the case that h(n) is chosen to be less than the actual cost. 

 Figure 11 illustrates the pseudocode of the A* algorithm wri�en in Python-like syntax [5]. 

 Figure 11: A* Pseudocode [5] 

 For more details on the A* algorithm, refer to the article [6]. 

 IV.  H  EURISTIC  T  ECHNIQUES 

 Heuristic  techniques  are  used  to  solve  problems  in  a  faster  and  more  efficient  way  by  optimizing  solution 
 quality,  accuracy,  and  precision  [7].  Heuristic  algorithms  aim  to  find  a  good  solution  to  a  specific  problem,  such  as 
 pathfinding,  within  a  reasonable  computation  time,  but  without  guaranteed  efficiency.  "Heuristics"  means  "to  find"  in 
 Greek  [8].  Heuristic  algorithms  include  Dijkstra's  algorithm  and  A*  algorithm,  which  were  described  in  the  previous 
 text, as well as the breadth-first search (BFS) algorithm [3]. 

 V.  M  ETAHEURISTIC  T  ECHNIQUES 

 Metaheuristics  are  essentially  high-level  strategies  that  combine  lower-level  techniques  to  describe  and  exploit 
 the  search  space.  Metaheuristics  are  a  higher  level  of  heuristics  and  usually  exhibit  be�er  performance  than  heuristics. 
 Metaheuristics  can  reduce  search  time  and  provide  satisfactory  solutions  for  complex  pathfinding  problems  in  video 
 games.  Based  on  studies,  metaheuristic  algorithms  such  as  genetic  algorithms  and  ant  colony  optimization  have  been 
 used  in  games  to  solve  pathfinding  problems.  Metaheuristics  are  based  on  certain  natural  phenomena,  and  the  most 
 successful  metaheuristic  algorithms  are  inspired  by  natural  systems.  For  example,  ant  colony  optimization  [9]  and  bee 
 algorithm were developed based on animal behaviors [10]. 

 VI.  G  ENETIC  A  LGORITHM 

 Genetic  algorithms  are  among  the  most  popular  evolutionary  algorithms  in  terms  of  the  diversity  of  their 
 applications.  A  wide  range  of  well-known  optimization  problems  have  been  a�empted  to  be  solved  using  genetic 
 algorithms.  Furthermore,  genetic  algorithms  are  population-based,  and  many  modern  evolutionary  algorithms  are 
 either based on genetic algorithms or share significant similarities. 

 The  essence  of  genetic  algorithms  is  encoding  the  optimization  function  as  a  sequence  of  bits  or  characters 
 representing  chromosomes,  manipulating  strings  using  genetic  operators,  and  selecting  suitable  individuals  with  the 
 aim  of  finding  a  good  (even  optimal)  solution  to  the  problem.  In  the  following  text,  fitness  and  fitness  function  will  be 
 used. Fitness refers to the desired characteristics to be obtained through algorithm iterations. 

 This is usually done through the following procedure: 

 1.  Encoding goals or cost functions. 

 2.  Defining a fitness function or selection criteria. 

 3.  Creating a population of individuals. 

 4.  Performing  an  evolutionary  cycle  or  iterations  by  evaluating  the  fitness  of  all  individuals  in  the 
 population,  creating  a  new  population  through  crossover  and  mutation,  suitable  reproduction,  etc., 
 ultimately modifying the old population and iterating using the new population. 

 5.  Decoding the results obtained by the solution. 

 These steps can be represented schematically as the pseudocode of genetic algorithms ("Figure 12"). 

 55 



 Scientific Journal for Contemporary Education and Application of Information Technologies – EdTech Journal 

 One  iteration  of  creating  a  new  population  is  called  a  generation.  In  most  genetic  algorithms,  fixed-length 
 strings  are  commonly  used  during  each  generation,  although  there  is  substantial  research  on  variable-length  strings 
 and  code  structures.  In  adaptive  genetic  algorithms,  encoding  the  fitness  function  often  takes  the  form  of  binary  strings 
 or  arrays  with  real  values.  For  simplicity,  binary  strings  were  used  in  the  discussion.  Genetic  operators  include 
 crossover, mutation, and selection from the population. 

 Crossover, denoted as  P  c  , is the main operator with  a high probability, and it is performed by replacing a 
 segment of one chromosome at a randomly chosen position with the corresponding segment of another chromosome 
 ("Figure 13"). 

 The  mutation  operator  is  obtained  by  randomly  changing  the  value  (0  →  1  or  1  →  0)  at  a  randomly  selected  bit 
 ("Figure  14").  The  probability  of  mutation  is  denoted  as  P  m  and  is  often  small.  Additionally,  mutations  can  occur  at 
 multiple locations, which can be advantageous in practice and application. 

 Selection  of  individuals  in  the  population  is  done  by  evaluating  fitness,  and  an  individual  can  be  included  in 
 the  next  generation  if  a  certain  fitness  threshold  is  reached.  Furthermore,  selection  can  be  fitness-based,  so  that  the 
 reproduction  of  the  population  is  proportional  to  fitness.  This  means  that  individuals  with  higher  fitness  have  a 
 greater chance of reproducing [11]. 

 Figure 13: Diagram of crossover of a random segment in genetic 
 algorithms [11] 

 Figure 12: Pseudocode of genetic algorithms [11] 

 Figure 14:  Diagram of mutation of a random bit  [11] 

 A  CKNOWLEDGEMENT 

 This  work  was  done  as  part  of  the  course  "Fundamentals  of  Applied  Research,"  under  the  guidance  of  Prof.  Dr. 
 Slavko Pokorni. 

 R  EFERENCES 

 1.  Millington, I. AI for Games, 3rd edition, 2019, pp. 195–196. 
 2.  "Dijkstra’s shortest path algorithm | Greedy Algo-7." GeeksForGeeks. Available at: 

 h�ps://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-algo-7/  .  Accessed: April 4, 2022. 
 3.  "Breadth First Search (BFS) Algorithm." algotree.org. Available at: 

 h�ps://algotree.org/algorithms/tree_graph_traversal/breadth_first_search  .  Accessed: April 4, 2022 
 4.  Black, P. E. "Manha�an distance." In Dictionary of Algorithms and Data Structures [online]. Paul E. Black, ed. 11 

 February 2019. Available at:  h�ps://www.nist.gov/dads/HTML/manha�anDistance.html  .  Accessed: April 4, 2022. 
 5.  "A* Search." Brilliant.org. Retrieved 10:24, April 4, 2022, from  h�ps://brilliant.org/wiki/a-star-search/  . 

 56 

https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-algo-7/
https://algotree.org/algorithms/tree_graph_traversal/breadth_first_search/
https://www.nist.gov/dads/HTML/manhattanDistance.html
https://brilliant.org/wiki/a-star-search/


 Scientific Journal for Contemporary Education and Application of Information Technologies – EdTech Journal 

 6.  Patrick, L. "A* pathfinding for beginners." GameDev WebSite. Available at: 
 h�ps://www.gamedev.net/reference/articles/article2003.asp  .  Accessed: April 4, 2022. 

 7.  Wolsey, L. A. "Heuristic Algorithms." Integer Program., no. January, p. 17, 1998. 
 8.  Rafiq, A. et al. "2020 IOP Conf. Ser.: Mater. Sci. Eng. 769 012021 'accepted for publication'." 
 9.  Yang, X. S. Nature-Inspired Optimization Algorithms, 2014, pp. 305–308. 
 10.  Yang, X. S. Nature-Inspired Optimization Algorithms, 2014, pp. 308–312. 
 11.  Yang, X. S. Nature-Inspired Optimization Algorithms, 2014, pp. 116–130 

 This work is licensed under a Creative Commons A�ribution-NonCommercial-NoDerivs 3.0 Unported License. 

 57 

https://www.gamedev.net/reference/articles/article2003.asp

